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1. Introduction

One of the main predictions of grand unified theories is the decay of the proton and the

experimental limits on the proton lifetime in various decay channels can give strong con-

straints on GUT models. In this paper we will study proton decay in theories with extra

dimensions. In particular we will discuss theories in which there are significantly different

predictions for the proton lifetime relative to four dimensional GUT’s. The theories of

interest here are those in which the GUT gauge fields propagate in more than four dimen-

sions, but the chiral matter fields are localized in the extra dimensions. In these cases, the

GUT gauge group can be broken to that of the Standard Model through compactification;

for example by a gauge field expectation value in the extra dimensions. We will show that

in such models one can get an enhancement of the lifetime in some decay channels with

respect to the four dimensional GUT prediction.

The mechanism for this is the following. Firstly the symmetries of the model are such

that dimension five baryon number violating operators are suppressed. This is natural for

instance in certain M theory vacua of this kind [1]. The leading contribution at dimension

six is through the mediation of colour triplet heavy gauge bosons. There is an infinite,

Kaluza-Klein tower of such massive lepto-quarks.1 Then, since generically (in the language

of SU(5)) the points where matter 10’s are localised are distinct from the points supporting

5̄’s, there is a qualitative difference between the decay modes such as p → π0e+
L and those

such as p → π0e+
R or p → π+ν̄R. The reason is simple: the first decay mode comes

1These are analagous to the X and Y bosons of four dimensional GUT ’s the difference being in the

number of such particles.
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from a current-current correlator where both fermion currents are of a single 10 multiplet

localised at the same point in the extra dimensions; on the other hand for the other two

channels the two currents involve a 5̄ and 10 multiplet which are localised at different

points in the extra dimensions. The propagator for the Kaluza-Klein lepto-quarks in the

extra dimensions can, as we will see explicitly, take a non-trivial form. The fact that the

value of the propagator can become small, even zero, is what suppresses the latter two

decay channels. In other words, cancellations to the amplitudes occur by including the

contribution of all the relevant Kaluza-Klein modes.

For the first channel (as we will review), the two currents are at the same point and the

universal short distance behaviour of the propagator leads to a divergence in the amplitude,

which in the M theory context studied in [2] was argued to be regularised. For the second

and third channels studied here, this divergence is absent in SU(5) precisely because the two

currents involved are separated in the extra dimensions. Hence there can be a suppression

of p → π0e+
R and p → ν̄R. For the case of SO(10) where all the matter of one generation

resides in a single 16 multiplet, all three channels suffer the same divergence, hence we do

not expect any qualitative difference between the three amplitudes in SO(10). This gives

a simple way to distinguish SO(10) from SU(5). Similarly decays involving more than one

generation e.g. p → K0µ+ can also be suppressed by the small value of the propagator;

this suppression can also occur in SO(10) because two different 16 currents are involved.

Of course, the detailed prediction for the cross-section for the proton decay involving

currents in different multiplets is quite model dependent, since it depends both on the

particular metric on the extra dimensions and on the precise locations of the two currents

involved in the decay. To investigate this model dependence we calculated the amplitude in

a variety of different spaces. In particular we took Q to be a space with constant positive,

zero or negative curvature and showed that a significant effect can always occur.

In the next section we review the basic calculation of the current-current correlator

in theories with localised fermions following [2]. We then go on to calculate the Green’s

functions for some model three dimensional spaces and show explicitly that the propagator

can become very small depending on where the fermions are localised. The final section

contains our conclusions and a comparison between results obtained for the M theory

models and some other extra dimensional GUT’s such as [11].

2. Proton decay in extra dimensions with localized fermions

We will consider theories in which the fermions and Higgs particles of the Standard Model

are localised in the extra dimensions, but in which the gauge fields propagate in (part of)

the bulk. The full spacetime is thus of the form X ×M3,1 with M3,1 our four dimensional

spacetime and X the compact extra dimensions. The Standard Model matter particles

are localised at points on X and the gauge fields propagate along a submanifold Q of X

times the four dimensional spacetime. In the GUT context, the GUT gauge group could

be broken to SU(3) × SU(2) × U(1) by a Wilson loop of the gauge field on Q. We will

also restrict our attention to theories in which the leading contribution to the violation
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of baryon number comes from dimension six operators (the analog of the gauge boson

contribution in the original non-supersymmetric four-dimensional GUT’s).

Although our results are more generally applicable, we will for concreteness focus on

the case of M theory compactifications on manifolds of G2-holonomy which provide an

explicit realisation of theories of this kind. Here X is a 7-manifold with G2-holonomy, Q

is a three dimensional submanifold along which X has a particular orbifold singularity [3],

and the chiral fermions are localised at particular kinds of conical singularity [4].2 The fact

that dimension four and five baryon number violating operators are naturally supressed in

such models was explained in [1].

Also, for definiteness we will restrict attention to the case where the GUT gauge group

is SU(5), so that before turning on the Wilson loop which breaks the symmetry to the

Standard Model gauge group, each generation of (supersymmetric) Standard Model matter

resides in the 5̄ ⊕ 10 with Higgs particles in the 5̄ ⊕ 5. So with the minimal field content

there are eight points Pi ⊂ Q where matter is localised: two for the Higgs multiplets, three

for the 10 matter and three for the anti-fundamental generations.

Following [2] we now describe how the Greens function on Q appears in the calculation

of the proton decay amplitude at dimension six in theories of this kind.

A matter current which can absorb or emit a massive gauge boson is of the form

Jµ = J 5̄

µ + J10

µ (2.1)

where the subscripts indicate the origin of the particles involved.

In the case of four dimensional GUT theory, the gauge boson contribution to the proton

decay amplitude is essentially

g2
GUT

∫

d4xJµ(x)J̃µ(0)D(x, 0) (2.2)

where J and J̃ are the two currents involved and D is the propagator of the massive gauge

boson. The latter transforms as (3,2)−5/3 under the Standard Model gauge symmetry.

Since the size of the proton is much bigger than the integration region which gives the

dominant contribution, we can replace Jµ(x) by Jµ(0). In this case the integral gives the

result
g2
GUTJµ(0)J̃µ(0)

M2
(2.3)

with M the boson mass. This is a consequence of the equation for the propagator

(∆4 + M2)D(x, 0) = δ(x, 0) (2.4)

where ∆4 is the four dimensional Laplacian. In the higher dimensional theories under

discussion here one must also include the contribution of all charged Kaluza-Klein modes

in the (3,2)−5/3 representation. In these cases the propagator D(x, y;x′, y′) is a function

of the coordinates y on Q as well as those x on M3,1 and the currents are functions of x

2These matters are reviewed in [5].
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but are labelled by the points Pi which are the values of y where the matter particles are

located. So we get an amplitude of the form

g2
7

∫

d4xJµ(x, P1)J̃
µ(0, P2)D(x, P1; 0, P2) (2.5)

Again we can replace Jµ(x) by Jµ(0), so the previous expression is well approximated by

g2
7Jµ(0, P1)J̃

µ(0, P2)

∫

d4xD(x, P1; 0, P2) (2.6)

The difference between (2.3) and (2.6) is the Pi dependent function:

G(y1, y2) ≡

∫

M3,1

d4xD(x, y1; 0, y2). (2.7)

The seven dimensional propagator satisfies

(∆4 + ∆Q)D(x, y1; 0, y2) = δ(x, 0)δ(y1 , y2) (2.8)

where ∆Q is the gauge covariant Laplacian on Q. From this we see that the eigenvalues of

∆Q act as masses2 from the four dimensional viewpoint.

D(x, y1; 0, y2) is the contraction of the Feynman propagator on M3,1 ×Q of the seven

dimensional gauge fields in the (3,2)−5/3+(3̄,2)+5/3 representation of the Standard Model

gauge group:

D(x, y1; 0, y2) =
1

(2π)4

∑

k

∫

d4p
e−ip·xΨ̄k(y1)Ψk(y2)

−p2 + λk
(2.9)

where Ψk are the eigenfunctions on Q of ∆Q with eigenvalues λk ≤ 0, and the integral over

p is considered after euclidean continuation.

When there are no zero modes of the Laplacian on Q, one can substitute this expression

in (2.7) and get:

G(y1, y2) =
∑

k

Ψ̄k(y1)Ψk(y2)

λk
(2.10)

ie the Green’s function of the scalar Laplacian on Q for scalar fields valued in (3,2)−5/3

representation.

When there is a non zero background gauge field such that the SU(5) symmetry is

broken to the Standard Model gauge group, the Laplacian typically has no zero modes in

the space of functions with values in (3,2)−5/3 + (3̄,2)+5/3 and the expression (2.10) is

well defined.

From the decomposition of the operator product

JµJ̃µ = J10

µ J̃µ10 + J10

µ J̃µ5̄ + J 5̄

µ J̃µ10 + J 5̄

µ J̃µ5̄ (2.11)

only the first term contributes to the cross-section for the decay of the proton into left-

handed positrons. The second and third contribute to the decays into neutrinos whereas

the last term does not contribute to the decay. So for the decays modes such as p → π0e+
L

studied in [2] both 10 currents are localised at the same point on Q. The corresponding

– 4 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
8

Greens function in (2.10) is therefore evaluated at P1 = P2 for this decay channel and

therefore the classical formula is divergent.3 This is presumably regularised in M theory [2].

However, since generically the points supporting the 5̄ and the 10 are distinct (for

example to generate reasonably small Yukawa couplings), for the decay channels involving

neutrinos, the 10 is at a point P1 distinct from the point P2 supporting the 5̄ current.

Therefore the current-current correlator depends explicitly on the Green’s function on Q

evaluated at two different points G(P1;P2). When G(P1;P2) takes a small value the decay

of the proton into neutrinos is suppressed accordingly. Generically, Q is a curved, compact

manifold and the Green’s function will be a non-trivial function of the geodesic distance

d(P1, P2) between the points. In order to investigate the behaviour of such functions, in

particular, whether or not they can take small values, we will present some explicit sample

calculations in the M theory context.

2.1 M theory compactifications on G2 manifolds

In the M theory context, the gauge fields propagate on a three-dimensional subspace (Q) of

the bulk. If Q has incontractible loops, so that its fundamental group π1(Q) is non-empty,

it is possible to break SU(5) to the Standard Model gauge group by a Wilson line in the

vacuum. This modifies the Kaluza-Klein spectrum with respect to zero background gauge

field; for example the lightest modes of the gauge fields corresponding to the unbroken

generators remains massless, while the others generically get a non-zero mass.

For an example, we take Q = S3/�p [2]. This space has non-contractible circles which

correspond to open curves in S3 that connect two points identified by the elements of �p.

The background gauge field can be taken to be a Wilson line around such circles. For

instance, the following Wilson line breaks SU(5) to the Standard Model gauge group:

UΓ = P e
i

H

γΓ
Abkg =















e4πiq/p

e4πiq/p

e4πiq/p

e−6πiq/p

e−6πiq/p















. (2.12)

If Φ(y) is a scalar charged under the gauge symmetry then Φ(y) = Φ(y + 2πR) where

we took y to be the coordinate around the loop. The Laplacian acting on Φ(y) depends

explicitly on the background gauge field. This makes computing the spectrum difficult.

However, since the background gauge field has zero field strength, F = 0, we can locally

eliminate the gauge field dependence by performing a non-single valued gauge transfor-

mation g(y) (see [8] for a simple example). The price we pay for this is to change the

periodicity condition on Φ(y) to

Φ(y) = UΓΦ(Γy) where Γ ∈ �p and y ∈ S3. (2.13)

where UΓ = g(2πR) acts in the appropriate representation.

3Note that in the cases when Q is one dimensional, the Green’s function is not divergent when P = P ′.

This actually happens in some orbifold GUT models [11].
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Thus, in the presence of the Wilson line, a charged scalar field on Q = S3/�p is

equivalent to a field on S3 satisfying the above invariance conditions. Since the spectrum

of the ordinary Laplacian is known on the round S3 we can proceed.

In order to compute the Green’s function G(y1, y2), one needs the eigenmodes of the

Laplacian on Q which satisfy the boundary conditions (2.13) and which take values in the

adjoint representation of SU(5). The decomposition of this representation under the group

SU(3)c × SU(2)L × U(1)Y is given by:

24 = (8,1)0 + (1,3)0 + (1,1)0 + (3,2)−5/3 + (3̄,2)+5/3 (2.14)

We will take UΓ such that the vector spaces of the decomposition (2.14) are eigenspaces

of this transformation. In particular, the Wilson line is chosen to leave the (8,1)0+(1,3)0+

(1,1)0 part to be invariant, since the Standard Model gauge symmetry is unbroken. In

particular we are interested in the scalar fields in the representation (3,2)−5/3 +(3̄,2)+5/3

which obey (2.13).

We will now compute the Green’s function explicitly in several examples when Q has

constant curvature. The details of most of these computations are given in the appendix,

but we will give some explicit derivations below also.

Constant positive curvature

3-manifolds with constant positive curvature are all quotients of the round 3-sphere by

a discrete group. We will compute the relevant Green’s function for quotients by �p,

beginning with the simplest example.

The simplest case: ��3 = S3/�2

This is a particular case of the example presented above, in which p = 2, q = 1 and

UΓ =















1

1

1

−1

−1















. (2.15)

Under this transformation the generators of the (3,2)−5/3 + (3̄,2)+5/3 representation are

odd (because the adjoint of the Standard Model is the only invariant representation).

Therefore to get invariant eigenmodes on S3/�2 we have to take the odd eigenfunctions on

S3 under the �2 transformation.

The eigenvalues of the Laplacian on S3 are labelled by integers k and given by λk =

−k(k + 2). The relative eigenspaces are

Vk = {Tk;m1,m2
| − k/2 ≤ m1,m2 ≤ k/2} (2.16)

where

Tk;m1,m2
(χ, θ, ϕ) =

√

k + 1

2π2
Dk/2

m2,m1
(χ, θ, ϕ) (2.17)
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where D
k/2
m2,m1 are the Wigner D-functions, written in terms of angular coordinates on

SU(2). The D’s are just the matrix elements of the spin k/2 representation of SU(2).

Under a �2 transformation, Tk;m1,m2
(y) 7→ (−1)kTk;m1,m2

(y). So the odd eigenfunc-

tions are those relative to odd k. We have also to change the normalization of such func-

tions, because the volume of S3/�2 is half of the volume of the defining S3.

The sum (2.10) becomes:

G(y1, y2) =
1

π2

∞
∑

k=1,3,...

k + 1

−k(k + 2)

∑

m1,m2

D̄k/2
m1,m2

(g(y1))D
k/2
m1,m2

(g(y2)) (2.18)

From group theory we know that [6]:

∑

m1,m2

D̄k/2
m1,m2

(g(y1))D
k/2
m1,m2

(g(y2)) =
sin[(k + 1)d(y1, y2)]

sin[d(y1, y2)]
(2.19)

where d(y1, y2) is the geodesic distance on the 3-sphere between y1 and y2.

Inserting this relation in (2.18) one can do the sum explicitly:

G(y1, y2) =
1

π2

∞
∑

k=1,3,...

k + 1

−k(k + 2)

sin[(k + 1)d]

sin[d]

=
1

π2

∞
∑

j=0

2j + 2

−(2j + 1)(2j + 3)

sin[(2j + 2)d]

sin[d]

= −
1

2π2 sin d

(

∞
∑

h=1

h

h2 − 1/4
sin[2hd]

)

= −
1

2π2 sin d

(

π

2

sin(π/2 − d)

sin(π/2)

)

where we used [10] and doing the last step, one gets:

G(y1, y2) = −
1

4π

1

tan d(y1, y2)
(2.20)

where d(y1, y2) ∈ [0, π/2] is restricted to the points representing S3/�2. We see that the

absolute value of the Green’s function takes all values between 0 and ∞. So in this example,

if the 10 multiplet and the 5̄ multiplet are maximally separated in ��3 the Green’s function

is zero and the cross-section vanishes. In this case the lifetime of the decay channel into

neutrinos receives no contribution at all from dimension six operators.

General Lens space

The Lens space L(p, r) is the quotient of the 3-sphere by the cyclic group whose generator

Γ is the SO(4) isometry given in �4 by [7]:

Γ =











cos(2π/p) − sin(2π/p)

sin(2π/p) cos(2π/p)

cos(2πr/p) − sin(2πr/p)

sin(2πr/p) cos(2πr/p)











(2.21)
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UΓ is given by (2.12). With the same procedure used for the previous case, one obtains the

formula for the Green’s function:

G(y1, y2) =

p
∑

w=1

uw d(y1,Γ
wy2) − π

4π2 tan d(y1,Γwy2)
(2.22)

where u ≡ e2πi5wq/p, and d ∈ [0, π] is again the geodesic distance on the sphere.

In order to study (2.22), we use the cartesian coordinates on �4 where S3 is defined

by x2 + y2 + z2 + t2 = 1, and choose, without loss of generality, y2 = yO ≡ (1, 0, 0, 0).

At first, we note that it has a singularity only at y1 → yO, at which d → 0. In this

limit G ∼ 1
4πd , as one expects. One can check that this is the only divergence. Secondly,

we note that the Green’s function on a Lens space has always zeros. Actually, the points

ỹ1 = (0, 0, z, t) (with z2 + t2 = 1) have the same distance d = π/2 from each of the points

ΓwyO = (x, y, 0, 0). This is because the distance on the sphere is given by cos d = 1 −
d2

E

2

in terms of the euclidean distance on �4, and the chosen points have always d2
E = 2. So.

for this value of d

G =
d − π

4π2 tan d

∑

w

uw = 0 (2.23)

Constant zero curvature

Any closed, compact zero curvature manifold is a quotient of the flat 3-torus by a discrete

group. Here we consider the case of the torus itself.

The 3-dimensional torus

We consider the square torus, with coordinates ~x and −1/2 ≤ xi < 1/2. It is a non-

simply connected manifold, whose fundamental group has three generators. We choose a

background gauge field such that the holonomy associated to each of three generators is

given by

Ui =















1

1

1

−1

−1















. (2.24)

with i = 1, 2, 3. This choice breaks SU(5) to the Standard Model gauge group.

The eigenfunctions on the torus with values in (3,2)−5/3 + (3̄,2)+5/3 are those which

satisfy the boundary conditions:

Φ(~x) = (−1)
P

i kiΦ(~x + ~k) (2.25)

for arbitrary ~k with ki ∈ �. This is because each lattice generator acts as −1 in the

representation (3,2)−5/3 + (3̄,2)+5/3.

Once we have found them, we can compute the Green’s function, obtaining:

G(~x,~0) = −
∑

~m

(−1)
P

i mi

4π|~x − ~m|
(2.26)

– 8 –
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This is the same formula as the electrodynamic potential of a distribution of positive and

negative charges situated on nodes of the lattice given by ~m, where the sign of the charge

is given by (−1)
P

i mi . It has the expected 1
4π|~x| singularity when ~x ∼ ~0. Moreover it has

zeros when any of the xi is equal to 1/2. Actually, the charges can be grouped in pairs,

one negative, one positive each of which has the same distance from such points. Summing

all these contributions gives so zero since the contribution from each pair is zero. One can

check this more explicitly by evaluating the expression (2.26) in the case ~x = (1/2, x2, x3).

Constant negative curvature

A constant negative curvature 3-manifold is a quotient of hyperbolic 3-space
�3 by a

discrete group. In the compact case such groups are very rich and complicated and a

description of the eigenfunctions of the Laplacian on charged scalars is difficult to give

explicitly. Instead of attempting an explicit computation, we will compute the Green’s

functions on
�3 itself and we will give an argument for the large suppression of the Green’s

funcion on compact manifolds with negative curvature.

The hyperbolic 3-space

In this case we get the Green’s function, by computing the Heat Kernel H(y1, y2; t) and

then integrating on t. Actually

H(y1, y2; t) =
∑

k

e−|λk|tΨ̄k(y1)Ψk(y2) (2.27)

and, if the integral converges,
∫ ∞

0
dtH(y1, y2; t) =

∫ ∞

0
dt

∑

k

e−|λk|tΨ̄k(y1)Ψk(y2)

= −
∑

k

Ψ̄k(y1)Ψk(y2)

λk

= −G(y1, y2) (2.28)

Following the explicit computation reported in the appendix, one gets:

G�3(y1, y2) = −
1

4π

e−d(y1,y2)

sinh d(y1, y2)
(2.29)

In this case the Green’s function is suppresed already at distance of order 1.

The Green’s function on a quotient of
�3 by a discrete group in the presence of Wilson

loops will be an infinite sum of the type:

G(y1, y2) = −
1

4π

∑

Γ

u(Γ)
e−d(y1,Γy2)

sinh d(y1,Γy2)
(2.30)

For the Torus we have found a similar expression and we have seen that it has zeros. In

this case we have also the suppression of G�3 at distance of order L = V 1/3, where V is

the volume of the final compact manifold. So it is conceivable that the combined action

of the cancellation by the Wilson lines phases and the exponential suppression will bring

G(y1, y2), if not to have zeros, to be strongly suppressed for particular choices of the points

(y1, y2). This would allow us to make the same conclusions as for the previous cases.
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3. Conclusions

We have found that in SU(5) theories, that the decays of protons into pions and neutrinos

or right handed positrons can be highly suppressed. So if, for instance, protons are observed

to decay into positrons and the lifetime for the decay channel into neutrinos is established

to be significantly longer than this decay time, the mechanism described here offers a

natural explanation. Unfortunately super-Kamiokande is not sensitive to the helicity of

outgoing positrons. A measurement of the dominant helicity would be a strong test of

these models with localised fermions and should be considered when planning future proton

decay experiments. Furthermore the qualitative difference between SU(5) and SO(10) that

we noted in the introduction is quite striking and seems to go beyond what can be explained

simply in four dimensional field theory with a finite spectrum, although perhaps the results

described here can also be “deconstructed” analagously to some of the results in [1].

In the models described here all the fermions of the standard model are localised in

the extra dimensions. In this case, the a priori problem that the SU(5) mass relations

for the first two generations are incorrect can be solved by introducing additional vector-

like localised matter (eg 5⊕ 5̄) which mix with these generations [1]. In many other

models considered in the literature, where proton decay has been considered in detail this

problem can be solved by including fermions in the bulk of Q which then mix with the

localised fermions.In M theory this option is not obviously available. Furthermore, in the

models of the sort considered in [11], the extra dimensions have boundaries and SU(5)

is broken by boundary conditions. These two considerations can then lead to models in

which decay channels involving the first generation only are absent at dimension six. The

dominant decays are then those such as p → K0µ+. By contrast, in the models under

consideration in this paper decays inolving the first generation are allowed. Moreover,

as we have explained, the same mechanism which suppresses, say, p → π+ν̄R can also

suppress p → K0µ+. In principle therefore it is straightforward to distinguish between

these different types of models experimentally.
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A. Green’s function on Lens spaces: details

In order to compute the Green’s function on Lens spaces, one needs the eigenmodes on

them.

A.1 Eigenmodes of Laplacian on the 3-sphere

In order to study the eigenmodes of the Laplacian on Lens spaces, we need to review the

eigenmodes on the 3-sphere [7].
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At first, we introduce the toroidal coordinates on the 3-sphere S3. Let x, y, z and t

be the usual coordinates in �4, so S3 is defined by x2 + y2 + z2 + t2 = 1, and can be

parametrized by the coordinates χ, θ and ϕ as

x = cos χ cos θ (A.1)

y = cos χ sin θ (A.2)

z = sin χ cos ϕ (A.3)

t = sin χ sin ϕ (A.4)

with 0 ≤ χ ≤ π/2, −π ≤ θ ≤ π and −π ≤ ϕ ≤ π.

The eigenvalues of the Laplacian on S3 are given by λk = −k(k + 2). The relative

eigenspaces are given by

Vk = {Tk;m1,m2
| − k/2 ≤ m1,m2 ≤ k/2} (A.5)

where the T ’s can be expressed in terms of the Wigner D-functions D
k/2
m2,m1 :

Tk;m1,m2
(χ, θ, ϕ) =

√

k + 1

2π2
Dk/2

m2,m1
(χ, θ, ϕ) (A.6)

A.2 Eigenmodes of Laplacian on Lens spaces

The Lens space L(p, r) is the quotient of the 3-sphere by the cyclic group whose generator

Γ is the isometry [7]

χ 7→ χ; θ 7→ θ + 2π/p; ϕ 7→ ϕ + 2πr/p (A.7)

It can be described using toroidal coordinates, with limit 0 ≤ χ ≤ π/2, −π/p < θ < π/p

and −πr/p < ϕ < πr/p. Obviously it cannot be covered only with one such patch, but

the set of non-covered points is of null mesure. Moreover it gives a good local description

around the point (χ, θ, ϕ) = (0, 0, 0).

Under the transformation (A.7) the eigenfunctions found above transform as:

Tk;m1,m2
(χ, θ, ϕ) 7→ e2πi(`+mr)/p Tk;m1,m2

(χ, θ, ϕ) (A.8)

Moreover the (3,2)−5/3 + (3̄,2)+5/3 representation takes a factor e2πi5q/p under the gauge

transformation UΓ. The condition (2.13) then becomes

Tk;m1,m2
(y) = e2πi(`+mr+5q)/p Tk;m1,m2

(y) (A.9)

and the invariant eigenmodes are those satisfying the constraint ` + mr + 5q = 0 mod p.

If one wants the right normalization, in order to get an orthonormal base, the
√

1
2π2

factor has to be changed in the more general
√

1
V , where V is the volume of L(p, r).

In what follows we will call T the eigenmodes of Laplacian with appropriately modified

normalization.
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A.3 Green’s function

Having the Laplacian eigenmodes on L(p, r), we can compute the Green’s function explic-

itly:

G(y1, y2) =
∑

k;m1,m2
constr

1

λk
T̄k;m1,m2

(y1)Tk;m1,m2
(y2) (A.10)

where the sum over λk = −k(k + 2) and {k,m1,m2} is constrained by ` + mr + 5q =

0 mod p and m1 and m2 running from −k/2 to k/2 with integer step. We implement these

constraints by using the fact that

1

p

p
∑

w=1

e2πiw(5q+`+mr)/p (A.11)

is equals to one if and only if ` + mr + 5q = 0 mod p and is zero otherwise.

So we can write:

G(y1, y2) =
∑

k 6=0;m1,m2
unconstr

1

λk
T̄k;m1,m2

(y1)

(

1

p

p
∑

w=1

e2πi5qw/pe2πiw(`+mr)/pTk;m1,m2
(y2)

)

=
1

p

p
∑

w=1

uw
∑

k 6=0;m1,m2
unconstr

1

λk
T̄k;m1,m2

(y1)Tk;m1,m2
(Γwy2)

=
1

p

p
∑

w=1

uw 2π2

V
GS3(y1,Γ

wy2) (A.12)

where u ≡ e2πi5wq/p and

GS3(y1, y2) ≡
∑

k 6=0;m1,m2

1

λk
T̄ S3

k;m1,m2
(y1)T

S3

k;m1,m2
((y2) (A.13)

is the regulated Green’s Function on the sphere (e.i. one neglects the zero mode in the sum

and the modes have the appropriate normalization for the sphere), which we will compute

in a moment.

By using (2.19) and [10] one gets:

GS3(y1, y2) =
1

2π2

∞
∑

k=1

k + 1

−k(k + 2)

sin[(k + 1)d]

sin[d]

= −
1

2π2

1

sin[d]

∞
∑

h=2

h

h2 − 1
sin[hd]

= −
1

4π tan d
+

1

8π2
+

d

4π2 tan d
(A.14)

When we use it in order to compute (A.12), we can neglect the constant 1/8π2 because it

gives zero contribution: it factors out from the sum over w, which is so equal to zero since

5q 6= 0modp. So

G(y1, y2) =

p
∑

w=1

uw d(y1,Γ
wy2) − π

4π2 tan d(y1,Γwy2)
(A.15)
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We note that if we use the formula (A.15) for the Green’s function on L(2, 1) = S3/�2,

we actually get the same result as (2.20).

B. Green’s function on
�3

In order to compute the fundamental solution to the the Heat equation (2.27) on
�3, we

will use the formula given at page 150 of [9]:

H(y1, y2; t) = (4πt)−3/2 e−d2(y1,y2)/4te−t d(y1, y2)

sinh d(y1, y2)
(B.1)

We compute the following integral over t:
∫ ∞

0

dt

t3/2
e−d2/4te−t = 23/2d−1/2K1/2(d)

= 23/2d−1/2 e−d(2π)1/2

2d1/2

= 2π1/2 e−d

d
(B.2)

Where Kν is the modified Bessel function. So the Green’s function is given by

G�3(y1, y2; t) = −

∫ ∞

0
dt H(y1, y2; t)

= −(4π)−3/2 d(y1, y2)

sinh d(y1, y2)
2π1/2 e−d(y1,y2)

d(y1, y2)

= −
1

4π

e−d(y1,y2)

sinh d(y1, y2)
(B.3)
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